If it's not what You are looking for type in the equation solver your own equation and let us solve it.
l2+9=1333.96
We move all terms to the left:
l2+9-(1333.96)=0
We add all the numbers together, and all the variables
l^2-1324.96=0
a = 1; b = 0; c = -1324.96;
Δ = b2-4ac
Δ = 02-4·1·(-1324.96)
Δ = 5299.84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$l_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$l_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$l_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{5299.84}}{2*1}=\frac{0-\sqrt{5299.84}}{2} =-\frac{\sqrt{}}{2} $$l_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{5299.84}}{2*1}=\frac{0+\sqrt{5299.84}}{2} =\frac{\sqrt{}}{2} $
| l2+9=1333.96 | | -8t+16t=-8 | | 5y-2=2/3 | | +0.3x=11 | | 8-5x2+9=7 | | 8-5x2+9=0 | | 2(-6+5v)=-6(5v+2) | | 4x²+(x-7)(x+1)=-7 | | 4.6/n=0.575 | | -(x=7)-5=4(x+3)-6x | | 2/5(n)=3/20 | | 7y²+13y=(8y)² | | 40w+(20)(1.5w)+(10)(2w)=1260 | | 1/2t3=1 | | X×.1+x=50000 | | 5x+25=9x+5 | | 6(m−4)=48 | | -9+5x=-32+8 | | 5x+32=9x+8 | | 6x²-48x-54=0 | | 9x-35=4x-5 | | 9x-35=9x+5 | | 3x+22=7x-10 | | Y÷16y+3y=0 | | 4+2(2-7b)=5(b-1)-6b | | n3+3n2+2n-60=0 | | -4x=12x+7 | | -4x=-12+7 | | -7p+27=-2(p-6) | | 2*n-4=28 | | x^2/20+7=0 | | 4x^2/20+7=0 |