k2-16k+23=0

Simple and best practice solution for k2-16k+23=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for k2-16k+23=0 equation:



k2-16k+23=0
We add all the numbers together, and all the variables
k^2-16k+23=0
a = 1; b = -16; c = +23;
Δ = b2-4ac
Δ = -162-4·1·23
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{41}}{2*1}=\frac{16-2\sqrt{41}}{2} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{41}}{2*1}=\frac{16+2\sqrt{41}}{2} $

See similar equations:

| x-2+x-8+x-4+x-7+x+6+x-3=720 | | t(447)=-6+3(447-1 | | -3(m-1)+8(m-3)=6m+7-5m | | -3(m-1)+8(m-3)=6m+7-5 | | 3(x-2)^2-7=20 | | 2600-70x=1690 | | t(447)=5447-3 | | 4550-135x=3470 | | 0.7(2x)+0.3x=66 | | -3(w+1)+8(w-3)=-5w+9+6w | | 4550-135x=3475 | | 3(4x+9)=21 | | f(4)=50 | | 5(3x−4)+1=56 | | 4n=3(n+12) | | 1+2xX=1+2x6 | | -4y=-2+26 | | 8x-4+6x+8+8=180 | | 4(4b-3)+6b=4(6b+4)-10 | | 2x=-2(5)+22 | | 8x-4=8+1.5 | | y÷(-20)=20 | | 8x-4+6x+8=8 | | 15xx12+6=19x+2 | | 6^2x-5-8=12 | | 8=8x-4+6x+8 | | y+41=3 | | 1/(p^2−3)^2; | | 6h+2=2(3h+1) | | 2y=-60-6(1-4y) | | 3(x+2)+9=0 | | 6x+8=8x-4(8) |

Equations solver categories