If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2+3k-10=0
We add all the numbers together, and all the variables
k^2+3k-10=0
a = 1; b = 3; c = -10;
Δ = b2-4ac
Δ = 32-4·1·(-10)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-7}{2*1}=\frac{-10}{2} =-5 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+7}{2*1}=\frac{4}{2} =2 $
| q+8=86 | | 1.1x-0.1x= | | 4/n=n/27 | | 3^(x-4)=(3^3)^x+28 | | 9x+5=7x-6 | | 2.1x-3=0.5+0.2 | | 58+5x+10+11x12=180 | | 5^( | | Y=180-x-(40-x) | | n-1/9=1 | | x/16+2=3 | | 30g=180 | | c/15=4 | | 114=6(5+2m) | | 7x2(2x+7)=9x+7 | | 4(u-4)-8=-2(-5u+9)-2u | | x+50+15=180 | | 5-(x-1)+3(2-x)-7=3x+7 | | x÷8=3 | | -8(v-8)=112 | | (3x+15)+(x+10)=103 | | 22⋅2n=(24)322⋅2n=(24)3 | | 105=7(k+7) | | (3x+15)(x+10)=103 | | 5(-4x-16)=20 | | 4x(-11)=33 | | (6x+4)(4x+26)=110 | | -182=7(1-9b) | | 2t^2-16t-18=0 | | 7×(x-2)=5x(x+3) | | C(x)=0.1x+12 | | (3y)=120 |