If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2+3=21
We move all terms to the left:
k2+3-(21)=0
We add all the numbers together, and all the variables
k^2-18=0
a = 1; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·1·(-18)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{2}}{2*1}=\frac{0-6\sqrt{2}}{2} =-\frac{6\sqrt{2}}{2} =-3\sqrt{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{2}}{2*1}=\frac{0+6\sqrt{2}}{2} =\frac{6\sqrt{2}}{2} =3\sqrt{2} $
| 7x-4x+31=-14x-14 | | -11x-16=-18x+18 | | 6+3x2=18 | | -2(5x+10)=-3 | | 8(x+4)-2=3(x-7) | | 0.65x=185.25 | | -2-z=5 | | 2y-9=60 | | 2y-9=28 | | 2y-9=36 | | p^2=-19p-88 | | 6=x-5+4 | | |7+5r|=38 | | 1/15=1/x+1/3x | | 7m-2=5m6 | | 16x2-64=0 | | x*10=x/10+33.66 | | Y=8+6x+2(x-3) | | 2w+10=200 | | 945=32(x+10)+29x+3(x-5) | | 2a-6=5a+18 | | -0.7+2.4k=18.05 | | 11b=4b+9b | | -3(-7y+7)-5y=4(y-1)-9 | | 1675=x(3x-8) | | 6x+5x=150 | | x^2+(0.75x)^2=961 | | 5z−2z(1+3)=12 | | 3/11y+20=0 | | 7/6-(5x-2)=1/4x-12 | | 7(m-6)=-32+2m | | 3w+15-5+2w=-5 |