If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2+15k+56=0
We add all the numbers together, and all the variables
k^2+15k+56=0
a = 1; b = 15; c = +56;
Δ = b2-4ac
Δ = 152-4·1·56
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-1}{2*1}=\frac{-16}{2} =-8 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+1}{2*1}=\frac{-14}{2} =-7 $
| (-p)/2=7 | | (10p)/2=40 | | 2+34=2x | | 2+34=3x | | x+47+96=180 | | X/3-x/9=7x/6-5/3 | | 1/x+3+1/x=1/2 | | x−1x2−1 =-2 | | 5+5n=5 | | 40/x+10=4/x-3 | | 5c-2c=-7-20 | | X2+y2=150 | | 11-2x=17-5x | | 2.45x+1.5=3.7x-2.55 | | 4y/2=20 | | (3x-4)2=8x(x-3)+52 | | -7=n+ | | 1.8=n3.14 | | 15/t=2 | | 9c-15=48 | | .3x=5 | | 5q-35=0 | | 8d-18=22 | | 7(x-5)=2(3x-1) | | 9z+3-4z=23 | | 7k-13=29 | | 4(2x-1)=25 | | 2x+x+45°=180° | | x²-8x+13=0 | | 8-(3x+7)=0 | | 29=-7-15y | | 6(5/6x+2/3)=9 |