j=-j(0.707-0.707j)

Simple and best practice solution for j=-j(0.707-0.707j) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for j=-j(0.707-0.707j) equation:



j=-j(0.707-0.707j)
We move all terms to the left:
j-(-j(0.707-0.707j))=0
We add all the numbers together, and all the variables
j-(-j(-0.707j+0.707))=0
We calculate terms in parentheses: -(-j(-0.707j+0.707)), so:
-j(-0.707j+0.707)
We multiply parentheses
-0j^2-0.707j
We add all the numbers together, and all the variables
-1j^2-0.707j
Back to the equation:
-(-1j^2-0.707j)
We get rid of parentheses
1j^2+0.707j+j=0
We add all the numbers together, and all the variables
j^2+1.707j=0
a = 1; b = 1.707; c = 0;
Δ = b2-4ac
Δ = 1.7072-4·1·0
Δ = 2.913849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1.707)-\sqrt{2.913849}}{2*1}=\frac{-1.707-\sqrt{2.913849}}{2} $
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1.707)+\sqrt{2.913849}}{2*1}=\frac{-1.707+\sqrt{2.913849}}{2} $

See similar equations:

| 0.5*(x-3)=18 | | 34=4a-6-12a | | x+5(x+3)=21 | | 10=2.5d | | 28.4=4-x | | 8j=122 | | 6(2x+5)=1/2(24x+4)+3 | | 14m-7-3/5m=6/5(4-3m) | | 2b-10=5b+11 | | -5=2x-(-4)+4x | | 5(3-3x)-9=x-12 | | 100=20-(-3x)+(-5x) | | 28a=3a+60 | | 8v^2-6v+4=0 | | 2x+3=3x−6 | | -1.4y=0.7 | | 2x^2-11=53 | | 2x-1x=x-1 | | h/8+4=64 | | x²-3=95 | | m^2+2m-8m=0 | | 10c+44=8c+38 | | 2x/5=9/16 | | 7+3/4x=x | | (-4x)-(-12)+(-3x)=33 | | n+7.1=-8.6 | | 10=z-+6 | | 7x□=84 | | (16x+23)^=1080 | | 9÷w=2.5 | | X^2+2x=181.25 | | 32+12m=140 |

Equations solver categories