i+23-2i=100/10i

Simple and best practice solution for i+23-2i=100/10i equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for i+23-2i=100/10i equation:



i+23-2i=100/10i
We move all terms to the left:
i+23-2i-(100/10i)=0
Domain of the equation: 10i)!=0
i!=0/1
i!=0
i∈R
We add all the numbers together, and all the variables
i-2i-(+100/10i)+23=0
We add all the numbers together, and all the variables
-1i-(+100/10i)+23=0
We get rid of parentheses
-1i-100/10i+23=0
We multiply all the terms by the denominator
-1i*10i+23*10i-100=0
Wy multiply elements
-10i^2+230i-100=0
a = -10; b = 230; c = -100;
Δ = b2-4ac
Δ = 2302-4·(-10)·(-100)
Δ = 48900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48900}=\sqrt{100*489}=\sqrt{100}*\sqrt{489}=10\sqrt{489}$
$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(230)-10\sqrt{489}}{2*-10}=\frac{-230-10\sqrt{489}}{-20} $
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(230)+10\sqrt{489}}{2*-10}=\frac{-230+10\sqrt{489}}{-20} $

See similar equations:

| 4x−(20x+13)=-200 | | 5x(2x^2+10x)=10x^2 | | 4x−(20x+13)=10 | | 9y+5y(22y+8)=500 | | 6x+10=60−4x | | 7x+10=73−2x | | 4.33=1/x*0,85 | | 1/8x+1/9x+1/12x+1/24x-13/72=0 | | 3(33-7y/6)-3y=-42 | | 5/x-3/2=3/x | | (x+5)(2x-5)=8(2x-5) | | 25=2*10*x+2*(10-x)*x | | 4z^2-3z-3=0 | | 25=40x-2x^2 | | 1+3m-2(2)m3=0 | | 4t^2-1t-1=0 | | 16=x*(x-2) | | p-2+7p=22 | | 25=2x*(20-x) | | 3m^2-1m-8=0 | | 1+3m-4m3=0 | | 0,5x-2,3=0,5x+1,15 | | 0.64x^2+1.6x+1=0 | | 6(8/7y+4)=4(5/2y-5) | | -0.5x^2+6x-7=0 | | -7x-83=x+69 | | x+156+x+162+x+147+124+63=1080 | | -15+4x=6+-3x | | y=100-0,17 | | 5x−9=3x-3 | | 8.5-2.7k=3.9k+-18.89 | | 3/2–x=1/4 |

Equations solver categories