If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g2+30g=0
We add all the numbers together, and all the variables
g^2+30g=0
a = 1; b = 30; c = 0;
Δ = b2-4ac
Δ = 302-4·1·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-30}{2*1}=\frac{-60}{2} =-30 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+30}{2*1}=\frac{0}{2} =0 $
| (-3x-3)=-3(4x-5) | | -4(-3x-9)=(7x-4) | | -10(-5x-6)=5(6x+4) | | 5(-x-10)=(-2x+4) | | 6v+18=18 | | 5e+4=2e+34 | | t/4+1=1 | | r/5-24=-20 | | 5+-2v=-5 | | 5+-3p=17 | | 10=-4f+6 | | 7-2f=-7 | | 4-4r=12 | | e=7=13.5 | | -21=-3(u-75) | | 5(t+13)=100 | | 16=2(g+2) | | (13x+79)+(17+67)=180 | | 45=-3c-15 | | 2(g+5)=18 | | -2(n+14)=-14 | | (2x-15+(59)=180 | | (7x-10)+(12x)=180 | | x+104+51=180 | | x+104+61=180 | | i(0.45)=8000 | | 23+90+8x+3=180 | | (5x-13)+33+90=180 | | 8u-7u+12=17 | | (5x-13)+33=180 | | 35(3x)(2x-20)=180 | | 0.1z=0.54 |