If it's not what You are looking for type in the equation solver your own equation and let us solve it.
f(2)=8-3
We move all terms to the left:
f(2)-(8-3)=0
We add all the numbers together, and all the variables
f2-5=0
We add all the numbers together, and all the variables
f^2-5=0
a = 1; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·1·(-5)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*1}=\frac{0-2\sqrt{5}}{2} =-\frac{2\sqrt{5}}{2} =-\sqrt{5} $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*1}=\frac{0+2\sqrt{5}}{2} =\frac{2\sqrt{5}}{2} =\sqrt{5} $
| 4x+3=4x-15 | | 5x–9=5–2x | | -9(x-3)=-81 | | 18.9b+1.84=17.6b-17.79 | | 9x-4(x+5)=20+5x | | -8v=-7v+2 | | 16x-52=0 | | -4w+3=w-27 | | -2f(f+9)=-18f+ | | 16w-4w=6w+6 | | 10(z+1)-3(z-3)=2(z-4+4(z-4) | | -32b+12=-4b-12 | | 9-x=-1x+9 | | 7y+5=10 | | 3x=48−5x2 | | -9x+2=29 | | 67-x=165 | | -8v=7v+2 | | 8b+5=12b-27 | | -6.5(h-5)=18.2 | | 4x+4+2x-6=-14 | | 187-y=223 | | 3(4x+2)=8x-2 | | 15x+26=12+20 | | -1x-1=4-2x | | 3/5x+4=1/10x-8 | | 14x34=11x+29 | | 3x=48-5x2 | | G(3)=-3x+1 | | 2(x+4)=-3(x-8) | | 7m+5-3m=33 | | 2k-10=5k+5 |