If it's not what You are looking for type in the equation solver your own equation and let us solve it.
f(2)+f(1)-4=30-4=
We move all terms to the left:
f(2)+f(1)-4-(30-4)=0
We add all the numbers together, and all the variables
f2+f1-4-26=0
We add all the numbers together, and all the variables
f^2+f-30=0
a = 1; b = 1; c = -30;
Δ = b2-4ac
Δ = 12-4·1·(-30)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-11}{2*1}=\frac{-12}{2} =-6 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+11}{2*1}=\frac{10}{2} =5 $
| x=100+0.5x^2 | | 3(2m+7)=-5(6=m) | | -4x-10-6x=-70 | | 3(t-1/3)/2-4=6 | | 16=1/3(9x-36)+4x | | (6+w)+(6+w)+w+w=48 | | 4x-9x=-20 | | 3x+10+2x=8-5x+12 | | 11y-7y=36.08 | | m/4+6=-4 | | 15x+8=8x+43 | | (5x+3)+(7-3x)+(7x+8)=180 | | 1/6b-6b-5+5b=20 | | -6x+3=3(x-2) | | 5+5w=265 | | (x+2)+(2x-5)+(3x+9)=180 | | 4(u+6)=-7u-42 | | 3n^2+3n=6 | | 5n=9n-18 | | 2x+6x-6=10 | | 5+5w=260 | | 1/6(3x+63)=4x | | 1=9-q | | 79+(4x+15)=180 | | 2x-4(x-4)=-9+5x+11 | | 123=-6w+-39 | | 9h-14=11 | | -8-2(2m+5)=8 | | 27=3p | | 882=24m+18 | | 27=2p+p | | 5(3x-9)=60 |