If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d2=59
We move all terms to the left:
d2-(59)=0
We add all the numbers together, and all the variables
d^2-59=0
a = 1; b = 0; c = -59;
Δ = b2-4ac
Δ = 02-4·1·(-59)
Δ = 236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{236}=\sqrt{4*59}=\sqrt{4}*\sqrt{59}=2\sqrt{59}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{59}}{2*1}=\frac{0-2\sqrt{59}}{2} =-\frac{2\sqrt{59}}{2} =-\sqrt{59} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{59}}{2*1}=\frac{0+2\sqrt{59}}{2} =\frac{2\sqrt{59}}{2} =\sqrt{59} $
| √x=16 | | -(5x+5)+7=-25+4x | | |n+9|=18 | | 4(x+3)=6x+16 | | -9m+9=-18 | | 2m=-2+24 | | -9(m+8)=-5(m-8) | | -7=-2+x/5 | | 3×-y15×-5y=40 | | 6-(-a)=5a-3 | | 9x4/2-10=8 | | 15x^2-5x+6=9x^2 | | 4(x+3)=6x+6 | | 15x^2-5x+6=9x | | X^+13x+12=0 | | (X+8)(2x+18)=0 | | √x^2+8x+16=x*x*x-16 | | -200=(12.8)(t)-4.9(t)^2 | | 5(1+2m)=(8+20m | | -3y-12=7(y+4) | | x/100*7=1300000 | | (10x+3)=(7x+7) | | 3+5x+7=70+ | | 12-x=26-3x | | x/10+5=-1 | | 6p+3=15+3p | | 6-c=-23 | | 2(3442+2a)=123 | | 1/3(9n-33)=-6n-11+9n | | (5x-3)/4-2=x/3 | | 0.4+m=4.6 | | x-1=5x+23 |