If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d2=172
We move all terms to the left:
d2-(172)=0
We add all the numbers together, and all the variables
d^2-172=0
a = 1; b = 0; c = -172;
Δ = b2-4ac
Δ = 02-4·1·(-172)
Δ = 688
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{688}=\sqrt{16*43}=\sqrt{16}*\sqrt{43}=4\sqrt{43}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{43}}{2*1}=\frac{0-4\sqrt{43}}{2} =-\frac{4\sqrt{43}}{2} =-2\sqrt{43} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{43}}{2*1}=\frac{0+4\sqrt{43}}{2} =\frac{4\sqrt{43}}{2} =2\sqrt{43} $
| 7.3=9.1-0.09x | | 3x+24=8x+2 | | (3x-4)+x=24 | | -5(2x-14)=-2(x+63) | | 18.38=3g+3.83 | | 1/2x+7/5=2/5x | | -7=+4y | | 0.5(x-8)+4x=10 | | 3y=2y-1 | | d2=53 | | x²=0.49 | | C(c+3)=54 | | v2=81/49 | | 60x2=10 | | R=9*3.14w | | 3x=194 | | 40h+200=360 | | 2-2x=2-2x+64 | | -210+12y-6y=90 | | 19y=18(4+2) | | 3x°+(2x+5)=90 | | 4+2x=5x-11 | | 3.14n+4=9 | | X+3x+32+2x+18+4x+10=360 | | -2/3(x+3)=2 | | 2.8x+0.7(2x+6)=0.7x-3.5 | | 10(g+10)=2(g+9) | | (−2/5)(p)=3/5 | | 10x-8=7x+7 | | (−25)(p)=35 | | X+3x+32=180 | | n2=32 |