If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60x^2=10
We move all terms to the left:
60x^2-(10)=0
a = 60; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·60·(-10)
Δ = 2400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2400}=\sqrt{400*6}=\sqrt{400}*\sqrt{6}=20\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{6}}{2*60}=\frac{0-20\sqrt{6}}{120} =-\frac{20\sqrt{6}}{120} =-\frac{\sqrt{6}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{6}}{2*60}=\frac{0+20\sqrt{6}}{120} =\frac{20\sqrt{6}}{120} =\frac{\sqrt{6}}{6} $
| R=9*3.14w | | 3x=194 | | 40h+200=360 | | 2-2x=2-2x+64 | | -210+12y-6y=90 | | 19y=18(4+2) | | 3x°+(2x+5)=90 | | 4+2x=5x-11 | | 3.14n+4=9 | | X+3x+32+2x+18+4x+10=360 | | -2/3(x+3)=2 | | 2.8x+0.7(2x+6)=0.7x-3.5 | | 10(g+10)=2(g+9) | | (−2/5)(p)=3/5 | | 10x-8=7x+7 | | (−25)(p)=35 | | X+3x+32=180 | | n2=32 | | 3x/24=8x/2 | | 5x2+12x=-2 | | 102x-3150-0.1x^2=0 | | -0.75x+6=5.33 | | 18x+23x=-1+17+180 | | 42.50=c+23 | | 4.0=5.2/x | | (4x+1)/(3)=(x-5)/(2) | | -3(r+5)=56 | | (4x-4)^2=43 | | b2=4/9 | | (4x+6)/2=9 | | 4(2q-3)=8q+12 | | 15x=42.6 |