c-3/2c+4=5/2c+7-3

Simple and best practice solution for c-3/2c+4=5/2c+7-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for c-3/2c+4=5/2c+7-3 equation:



c-3/2c+4=5/2c+7-3
We move all terms to the left:
c-3/2c+4-(5/2c+7-3)=0
Domain of the equation: 2c!=0
c!=0/2
c!=0
c∈R
Domain of the equation: 2c+7-3)!=0
We move all terms containing c to the left, all other terms to the right
2c-3)!=-7
c∈R
We add all the numbers together, and all the variables
c-3/2c-(5/2c+4)+4=0
We get rid of parentheses
c-3/2c-5/2c-4+4=0
We multiply all the terms by the denominator
c*2c-4*2c+4*2c-3-5=0
We add all the numbers together, and all the variables
c*2c-4*2c+4*2c-8=0
Wy multiply elements
2c^2-8c+8c-8=0
We add all the numbers together, and all the variables
2c^2-8=0
a = 2; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·2·(-8)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*2}=\frac{-8}{4} =-2 $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*2}=\frac{8}{4} =2 $

See similar equations:

| 24/c-3=1,c= | | 2g-6=5g-24 | | 2x+3(1.5x)=80 | | 15b-9b=18 | | 2.5•x=8.75 | | Y-3y-28=0 | | p-14=p-7 | | n-2=14-4n+n | | 92-x*12=-75 | | -4+6x+8x=-4-7x | | 5(4x-9)=45x | | -111+51p=35(12p+57) | | -(8x-3)-x=4x+6(5+x) | | 3x/8+14=2 | | X^2-6x+83+106=180 | | z/3+17=21 | | 6-8x=5x-10x+3 | | 9(5x-3)=45 | | x^2=6x+19=0 | | (x+6)+(4x)=90 | | 18x-30=18x-6 | | s-7/6=-11/8 | | 7-7x=91 | | X+8x3=48 | | -3+5x-4=24 | | a-11/6=-11/8 | | 2(9x-15)=3(6x-2) | | 13x-17=180 | | 4(3+c)+c+c=c+4 | | 9+2(3x-5)=9-5(2x+1) | | 2(9x-15=3(6x-2) | | -3.5=x+2.8 |

Equations solver categories