If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b2=61/121
We move all terms to the left:
b2-(61/121)=0
We add all the numbers together, and all the variables
b2-(+61/121)=0
We add all the numbers together, and all the variables
b^2-(+61/121)=0
We get rid of parentheses
b^2-61/121=0
We multiply all the terms by the denominator
b^2*121-61=0
Wy multiply elements
121b^2-61=0
a = 121; b = 0; c = -61;
Δ = b2-4ac
Δ = 02-4·121·(-61)
Δ = 29524
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{29524}=\sqrt{484*61}=\sqrt{484}*\sqrt{61}=22\sqrt{61}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-22\sqrt{61}}{2*121}=\frac{0-22\sqrt{61}}{242} =-\frac{22\sqrt{61}}{242} =-\frac{\sqrt{61}}{11} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+22\sqrt{61}}{2*121}=\frac{0+22\sqrt{61}}{242} =\frac{22\sqrt{61}}{242} =\frac{\sqrt{61}}{11} $
| 7–6b=19 | | -4x-7-3x+4=26 | | -72c-96=2c+8+c | | 4b-5b+9=-1 | | 5+3(z+4)=35 | | -19=-17k/5 | | w+67=89 | | 3x−14x=+7 | | 18+17=-5(7x-7) | | -2(4x-8)+4=-8x+20 | | 2(3u+7)=–4(3–2u) | | -1/7=-1/2u-1/3 | | -113=7+8h | | 7x-11=3x+41 | | -113=7+9h-8 | | W+3+2w=18 | | 7y-19=9y-37 | | 47+3x+10=-9x-39 | | .5y-8=-4 | | 105+(8x+11)=180 | | 43x+-3=-230 | | 5^-3x+30=27 | | -7=6a+a | | 3x-23=x=11 | | 8(y+4)=7y+33 | | 13x^2-66x+5=0 | | x+0.03x=204 | | –9+8k=7+4k | | 3y=4y^2 | | x/4-2/1=10 | | (2x+1)/4=-6 | | (105)-(8x+11)=180 |