If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b2=1210
We move all terms to the left:
b2-(1210)=0
We add all the numbers together, and all the variables
b^2-1210=0
a = 1; b = 0; c = -1210;
Δ = b2-4ac
Δ = 02-4·1·(-1210)
Δ = 4840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4840}=\sqrt{484*10}=\sqrt{484}*\sqrt{10}=22\sqrt{10}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-22\sqrt{10}}{2*1}=\frac{0-22\sqrt{10}}{2} =-\frac{22\sqrt{10}}{2} =-11\sqrt{10} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+22\sqrt{10}}{2*1}=\frac{0+22\sqrt{10}}{2} =\frac{22\sqrt{10}}{2} =11\sqrt{10} $
| 3x^2+7x=133 | | 2,5x=134 | | 7x-x+4=-30 | | 2x-3x=320 | | x-30=4x-60 | | 32x²+13x-90=0 | | 5a+30=-6a+20 | | 4y-6y=60 | | X²+15x-14=0 | | 2x+3=2.5x-7 | | 5x+10x=10 | | 90-8x=10x | | x^2-48x+496=0 | | 2(y+1)=20 | | b+98=3 | | 6(p+1)=12 | | x-3=2(x+5)2x+2 | | 5x+0.5x=180 | | 14n-2=34 | | 43/10-(22/5x+51/2=(-33/5x+11/5) | | 43/10-(22/5x+51/2=(-33/5x+11/5 | | a/8=14 | | 3/4(20y-8)+5=1/2y+1/4(20y+8 | | 2(t+1)=12 | | 3/5y-4/y=2/5 | | 16~y=9 | | 8t+2=18 | | c8+9=9 | | p+25=6 | | 1/2p+15=-1/4p+18 | | 1/3x=20x+10 | | X+8=1/7x-2 |