If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b2-9=0
We add all the numbers together, and all the variables
b^2-9=0
a = 1; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·1·(-9)
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6}{2*1}=\frac{-6}{2} =-3 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6}{2*1}=\frac{6}{2} =3 $
| 0.20=x^2/85-x | | 165-22x=17x | | -8r+4r+18r+-2r=-8 | | 2x+6/4x-4=0 | | k/13=-7 | | 91=-5k+7(2k=4) | | 13+7g=83 | | 5j-(-3)=73 | | 8-n=-4n+2n | | Z=x-x | | 3^x=512 | | 6x+16=5x+25 | | 5-3x=33-5x | | 80°=(4x-5)° | | 30-4x=16+3x | | X=185+1.375x | | 35t+70-t=385 | | -3(m-85)=3 | | 15x^2-x=00 | | -48=-6(p+24) | | 5x-(3x-7)4=21 | | 7m+3=6+9m | | 2k+6=10k+2 | | 2(x/3)-3/4=x/6+21/4 | | (6x+7/7)-3=(5x-3/8) | | 0.5(3x+5)=13 | | 9k+6=10k+2 | | 0.5(2x+12)=1 | | 9k+6=10+2 | | 0.5(4x+6)=9 | | 8=4n | | 44=n-29 |