If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b2-4=0
We add all the numbers together, and all the variables
b^2-4=0
a = 1; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·1·(-4)
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4}{2*1}=\frac{-4}{2} =-2 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4}{2*1}=\frac{4}{2} =2 $
| 4x+6/3=7x+2/3 | | 1-2(1+3x-2(x+2)+3x)=-1 | | |x|+5=11 | | 55=x+64 | | 10(z+20)=40 | | 4(x-2)=-5/3 | | -5u+3=6(u-5) | | 2y(4y+1)=3y | | 3(1+7x)=7x-39 | | 4(x-2)/1=-5/3 | | 3(1=7x)=7x-39 | | Y=-16t^2+37t-20 | | 4m2+9m-55=0 | | 3(1=7x)=7x | | 2n2+11n+9=0 | | 14-6=15+5x | | 2,100=3x+x | | t+4-9=-7 | | -1/3a=0 | | x=3(-8) | | 6p2-12p+6=0 | | 6h+50-h-57=-3h+13 | | 10+5x=16+3x | | z-32=0 | | 6m^2+11m-95=0 | | -x+9+5x=37 | | x3-1.93=-4.1 | | 21/7/(15a)=5/14/(.8) | | (9.9+3.6)/0.25;x=3.6 | | 4n2-9=0 | | 3/4(d+2)=-1 | | 2,100=2x+x |