If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b2+5=20
We move all terms to the left:
b2+5-(20)=0
We add all the numbers together, and all the variables
b^2-15=0
a = 1; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·1·(-15)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{15}}{2*1}=\frac{0-2\sqrt{15}}{2} =-\frac{2\sqrt{15}}{2} =-\sqrt{15} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{15}}{2*1}=\frac{0+2\sqrt{15}}{2} =\frac{2\sqrt{15}}{2} =\sqrt{15} $
| 290+t=360 | | -24=b-5 | | b15=3 | | a+18=20 | | 2(c-7)=25 | | 263+g=360 | | 21=6+m | | 0.3x+7=10-7 | | X+y=324 | | 230+v=360 | | 56-1=n-9 | | 0.75(y+1)=21 | | 85-7=n-8 | | 6(2x+8)=3(9x+1) | | 11x+3=80° | | 2w=360 | | 305+f=360 | | 20+n=7-5 | | 1/3x+1/5=4(3/4x+1) | | 52s=360 | | 13+3t=180 | | 7z=-84z= | | T+13+2t=180 | | 212+a=360 | | 120+(-n)=20+7 | | 78+t=360 | | 2x-23=x+48 | | -5x+21=8x-18 | | 238+x=360 | | 2x-26=x+47 | | 90+n=-19-5 | | -3(4x+9)2(3x+8)=x-(9x-5) |