If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b+90+3/2b+(2b-90)+(b+45)=540
We move all terms to the left:
b+90+3/2b+(2b-90)+(b+45)-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
b+3/2b+(2b-90)+(b+45)-450=0
We get rid of parentheses
b+3/2b+2b+b-90+45-450=0
We multiply all the terms by the denominator
b*2b+2b*2b+b*2b-90*2b+45*2b-450*2b+3=0
Wy multiply elements
2b^2+4b^2+2b^2-180b+90b-900b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $
| 4(2y-7)-2(3y+3)=3-2(y+2) | | 4(y+)-3=y+3(y+3) | | 2(5-3x)+7x=9 | | b+90+3/2b+(2b-90)+(b+90)=540 | | 2x-3(x-1)=24 | | 21x+3=45 | | y+12.2=-15.9 | | 3x-8-14=x+16 | | 3x^2+7x-126=0 | | 2(6x-15)=42 | | 7x-2-3x=x+7 | | 7x=-5x^2+10 | | Y=C1x2+C2 | | 2x-19+x-7=x | | 3u+33=9(u+5) | | -a/3=2/6 | | 8x+13-5x-15=7x-16 | | 14x+13-19=7x+15 | | 4(y+3)-3=y+3(y+3) | | −2+2w=6+5ww−2+2w=6+5w | | 300=5g | | x^2-18x-90=5 | | −2+2w=6+5ww−2+2w=6+5w. | | 4x+12-4=24 | | x-8/25=-1 | | 4(x-1)+3=-2x+19 | | -5(-2x-4)+5x-4=−29 | | 7x=32+5/3x | | 45/16+3/2x=-7/4x-19/16 | | 18+14x=20x+6 | | 3(5)=1/2(6x+24 | | -3x+-15=15 |