b+3/2b+(b+45)+90+(2b-90)=540

Simple and best practice solution for b+3/2b+(b+45)+90+(2b-90)=540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for b+3/2b+(b+45)+90+(2b-90)=540 equation:



b+3/2b+(b+45)+90+(2b-90)=540
We move all terms to the left:
b+3/2b+(b+45)+90+(2b-90)-(540)=0
Domain of the equation: 2b!=0
b!=0/2
b!=0
b∈R
We add all the numbers together, and all the variables
b+3/2b+(b+45)+(2b-90)-450=0
We get rid of parentheses
b+3/2b+b+2b+45-90-450=0
We multiply all the terms by the denominator
b*2b+b*2b+2b*2b+45*2b-90*2b-450*2b+3=0
Wy multiply elements
2b^2+2b^2+4b^2+90b-180b-900b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $

See similar equations:

| 2x-3(2x-5)=7x+12 | | n−2.8÷0.2=−14 | | -4(t+5)=-44 | | (2x-10)(4x-2)=x-1-1 | | 55-(4x=5)=48 | | (3/4x)+7=(7/12x)+3 | | -9x-1=-8x-7 | | -32+5x=-4(5-2x) | | 3+3n=5n+9 | | (C+13)-2c-(1-3c)=2 | | -5(y-10)=-10 | | 4x=8x-9 | | 6x-34=-10x+14 | | -4(s+6)=-36 | | 23/w=25 | | 5z+z-1=6 | | m^2-67=-8m | | h-6/5=2 | | 4x-12/3=20 | | 71=(19)^x | | 4x+4=18-6x | | 71=19^(x) | | 7x=90-5 | | 3x-16=2x-4x+34 | | N+3-2+2n-2n=3 | | 4q/4=52/4 | | |2x+4|=22 | | 1/7x=90-5 | | 4x=x^+9 | | 19=15w-12w-1 | | 3k+10=19+2 | | -8x-5x=3+2x |

Equations solver categories