If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b+(b+45)+90+(2b+90)+3/4b=540
We move all terms to the left:
b+(b+45)+90+(2b+90)+3/4b-(540)=0
Domain of the equation: 4b!=0We add all the numbers together, and all the variables
b!=0/4
b!=0
b∈R
b+(b+45)+(2b+90)+3/4b-450=0
We get rid of parentheses
b+b+2b+3/4b+45+90-450=0
We multiply all the terms by the denominator
b*4b+b*4b+2b*4b+45*4b+90*4b-450*4b+3=0
Wy multiply elements
4b^2+4b^2+8b^2+180b+360b-1800b+3=0
We add all the numbers together, and all the variables
16b^2-1260b+3=0
a = 16; b = -1260; c = +3;
Δ = b2-4ac
Δ = -12602-4·16·3
Δ = 1587408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1587408}=\sqrt{16*99213}=\sqrt{16}*\sqrt{99213}=4\sqrt{99213}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1260)-4\sqrt{99213}}{2*16}=\frac{1260-4\sqrt{99213}}{32} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1260)+4\sqrt{99213}}{2*16}=\frac{1260+4\sqrt{99213}}{32} $
| x-037x=$12.50 | | 135 =t−136 | | 2(x+1)=-6x+2 | | 5x+2(11.5-4x)=8.5+x | | -r+9=-1−2r | | -6v/5=42 | | 8d-6d-11=30 | | -4y=-8/5 | | -88=8(k-7)-8 | | 12x-2=8x-4+4x+2 | | 2(x+3)=-4(-x-2)+1 | | (x+6)(x-4)=24 | | -4d+-16=16 | | 10x=-2x+36 | | 6u+18=-4-8+6u | | 3/4u=-12 | | 4x+6(4x-10)=108 | | -1=-(m-68) | | -1=-(m-68 | | (-3+5x)=-58 | | 92x=70 | | 8x-4=2(3x+6) | | -8(-12-12x)=12(11x-1 | | -(5-5x)-9=7x-28 | | 9(j-81)=45 | | 1/2(8x-10)=2x-11 | | 18=-x+4 | | -2x-14=10-6x | | 39-12w=716w | | 6(u+3)=-2(2u-4)+6u | | 15=80-20x | | x-3(0)=-1 |