If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b+(3)/(2)b+(b+45)+(2b-90)+90=540
We move all terms to the left:
b+(3)/(2)b+(b+45)+(2b-90)+90-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
b+3/2b+(b+45)+(2b-90)-450=0
We get rid of parentheses
b+3/2b+b+2b+45-90-450=0
We multiply all the terms by the denominator
b*2b+b*2b+2b*2b+45*2b-90*2b-450*2b+3=0
Wy multiply elements
2b^2+2b^2+4b^2+90b-180b-900b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $
| 4d+10=6d-6 | | -9/5n=-3 | | 2+3x-62=360 | | 6y-3=600 | | 12+15x=-21x-60 | | 2+3x+62+62+62+62+62=360 | | -32+28x=-10-6x | | 11/12+5/24w=7/60 | | 7n2+13n-24=0 | | 1x-2+2x=6+5x | | 5r2+21r+4=0 | | 7m2+18m+8=0 | | 295+39d=350+28d | | -8(x-5)=x | | 3.9=2.6-0.3y | | 3r2+26r+16=0 | | 8p+6=8p | | 5x-2+10x-18=3x+14 | | 3(5x)=5(3x) | | 5n-4=-6 | | 2u-6=-12 | | 9n2-12n+4=0 | | 2/3m=-7/6 | | (-1,4);m=2/3 | | 18y=13 | | 24=5r-9 | | 3+2x=2+(-2x) | | -6x-6=2 | | 3+2x=2+(2x) | | X/2=3+x/5 | | 2(1x-1)=1x-4 | | -3(2x-8)=-2 |