If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3r^2+26r+16=0
a = 3; b = 26; c = +16;
Δ = b2-4ac
Δ = 262-4·3·16
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-22}{2*3}=\frac{-48}{6} =-8 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+22}{2*3}=\frac{-4}{6} =-2/3 $
| 8p+6=8p | | 5x-2+10x-18=3x+14 | | 3(5x)=5(3x) | | 5n-4=-6 | | 2u-6=-12 | | 9n2-12n+4=0 | | 2/3m=-7/6 | | (-1,4);m=2/3 | | 18y=13 | | 24=5r-9 | | 3+2x=2+(-2x) | | -6x-6=2 | | 3+2x=2+(2x) | | X/2=3+x/5 | | 2(1x-1)=1x-4 | | -3(2x-8)=-2 | | 4x-4=10x+14 | | 2r+4r=2r+6r | | 12(p-9)=4(-8p+6) | | Y=-0.65x+143 | | 31=6r−11 | | 5=n/18 | | -16/x-4=-3 | | 2^(4x+3)=18 | | 10x-(-15)=45 | | 9-3h+6=60 | | x=-9/8 | | 3a-9-8a=11 | | 7x=8-5x+4 | | 6y−4=38 | | 6x/2+7x/4=45 | | (-1/8)x=2 |