a=1/2,22,18

Simple and best practice solution for a=1/2,22,18 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a=1/2,22,18 equation:



a=1/2.22.18
We move all terms to the left:
a-(1/2.22.18)=0
We add all the numbers together, and all the variables
a-(+1/2.22.18)=0
We get rid of parentheses
a-1/2.22.18=0
We multiply all the terms by the denominator
a*2.22.18-1=0
Wy multiply elements
2a^2-1=0
a = 2; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·2·(-1)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*2}=\frac{0-2\sqrt{2}}{4} =-\frac{2\sqrt{2}}{4} =-\frac{\sqrt{2}}{2} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*2}=\frac{0+2\sqrt{2}}{4} =\frac{2\sqrt{2}}{4} =\frac{\sqrt{2}}{2} $

See similar equations:

| a=1/22218 | | 2(9y+1=-2(y-7) | | 8(2-3x)^2=-216 | | 5k+1=12k+1 | | x=1+√2x+1 | | p-180=3 | | P-180=3(p-50) | | 2^x+1=27 | | 6x-36=2x+4 | | 9+x³=1 | | 4(x+5)=4(x+6) | | X+(x+3)+(2x-5)=16 | |  X+(x+3)+(2x-5)=16 | | X+(x+3)+2x-5)=16 | | 4/18=n/27 | | -11+x+15+4x+x=8 | | 3x-18=2x+1 | | (16^(2p-3))(4^(-2p))=2^4 | | -3.1x-7-7.4x=1.5x-6(x-3/2) | | 6(9y-1)-10(5y)-3y=22-4(2y-12)+8(y-6 | | 9x^2-1020x+12000=0 | | 13x+32=180 | | 5(y-20)=4+6 | | 5^n+4=25^2n-4 | | 35m^2-16=0 | | 6x+7x+8x=34650 | | -(8-7w)+5w+-3(6w+4)=3(5w-7)+-7(3w+2)+15 | | 5x+6x+7x=31050 | | 3·(x‒5)=2x‒10 | | 2(1.08)^x+1=8 | | 2=t÷6 | | v/5+11=37 |

Equations solver categories