If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a2+729=2025
We move all terms to the left:
a2+729-(2025)=0
We add all the numbers together, and all the variables
a^2-1296=0
a = 1; b = 0; c = -1296;
Δ = b2-4ac
Δ = 02-4·1·(-1296)
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72}{2*1}=\frac{-72}{2} =-36 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72}{2*1}=\frac{72}{2} =36 $
| t=48=75 | | a2+64=25 | | 2k–5=5k= | | 2x+x+4(-x)=2(x+6) | | 6(x+4)+1=0 | | x^2-4+12=6x-2 | | 4j-10=10 | | X²+60x+800=0 | | 331/4*w=532 | | 2x−9=15−1x | | 2x2+x-16=3x+8 | | a2+400=625 | | -4x+x-4=2x+4(-x) | | 10=d-14 | | 6d+10+4d+20=90 | | 17=d=9 | | 13(3x-3)-6x=-4 | | (4x+1)+(5x-4)+(8x-1)=180 | | 42•x+11=30•3x+1 | | 10x+60=250 | | 4x+3=-x+23 | | 4(4z-3)=3(z-1)+3 | | X-24=29x296 | | 220+80x=10x | | -4x-8=-(5x=+3) | | −3(2x+5)+4x=11 | | p=–285+45 | | 3(2x+4)=x-3+5 | | 2(3a−2)+4a=10a-210a−2 | | 2/3x+16=12.5 | | 3/5m-1/3=-10/3 | | 5x+22=98 |