If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=Y2-18Y+64
We move all terms to the left:
-(Y2-18Y+64)=0
We add all the numbers together, and all the variables
-(+Y^2-18Y+64)=0
We get rid of parentheses
-Y^2+18Y-64=0
We add all the numbers together, and all the variables
-1Y^2+18Y-64=0
a = -1; b = 18; c = -64;
Δ = b2-4ac
Δ = 182-4·(-1)·(-64)
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{17}}{2*-1}=\frac{-18-2\sqrt{17}}{-2} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{17}}{2*-1}=\frac{-18+2\sqrt{17}}{-2} $
| 2+t=10+2t | | -7-7r=-8r | | 6x-7=138x+56 | | P=(x/3x≤11 | | 7-6u=-8u-9 | | 196=14/9x=1/9 | | 6x-7=13x+9 | | 18+3(3+5x)=15x | | -72=7(2+4k)+3(-7+5k) | | −120=10x= | | 196=14/9,x=1/9 | | b−2=3= | | 4x+5-8=6x-4 | | r–3+ –9=–8 | | (6x-4)+(6x-4)=180 | | -5(5x-2)=81 | | 10(x-1)=-100 | | -8+18=2(2x-9) | | -3.9p-0.75=-0.9(3.6p+1.2) | | 55+75+y=180 | | 7x=12+5x* | | x/62.5=1.2/12.5 | | f(-8)=6(-8)-3 | | 3x–15=19 | | f(-8)=6(-8)- | | x/62.5= | | 9−3m=–3 | | B+d=8 | | 55+50+75+y=180 | | 1/20x=2 | | 16=1/2*4(b3+b2) | | 7p-4(1+7p)=122 |