If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=2Y^2+5Y-3
We move all terms to the left:
-(2Y^2+5Y-3)=0
We get rid of parentheses
-2Y^2-5Y+3=0
a = -2; b = -5; c = +3;
Δ = b2-4ac
Δ = -52-4·(-2)·3
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-7}{2*-2}=\frac{-2}{-4} =1/2 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+7}{2*-2}=\frac{12}{-4} =-3 $
| 13*x=5.2 | | -8p=-1/43 | | 2x-6(x-3)=5 | | 4(w+1)=−24 | | m2–28m=0 | | x/6+x/2=3-x | | 8+3qq=-4 | | 8-cc=12 | | 12x+8=-7 | | 3(4)+3(2+7)=x×(4+9) | | 14x+(-13)=3 | | 15+x+7=15+x+7 | | 65x-40=3 | | M+7/3=m-3 | | 2.6(x-11)=15-4x | | Y5+x10=140 | | 10x+14=-9 | | 11+6x=2(16x+9)+x | | 2.6{x-11}=15-4x | | 7x^2-7x+42=0 | | 2x+150=21x | | x2-50x+300=0 | | 10x+(-11)=8 | | 13n-2=19 | | -x+44=3x+16 | | 8x-6=8(x-1)+16 | | 32u−211=78 | | 32u−211=78. | | -10=w/3+5 | | 8x+6=8(x-1)+16 | | 3x÷5+1=5 | | 1.3x+5=-2 |