If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=2Y^2+5Y-1
We move all terms to the left:
-(2Y^2+5Y-1)=0
We get rid of parentheses
-2Y^2-5Y+1=0
a = -2; b = -5; c = +1;
Δ = b2-4ac
Δ = -52-4·(-2)·1
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{33}}{2*-2}=\frac{5-\sqrt{33}}{-4} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{33}}{2*-2}=\frac{5+\sqrt{33}}{-4} $
| 90=(x-12)2 | | 7-5n=11 | | 0+7y=8 | | 14x+0=8 | | 15(2x+4)=(x+6)(x+14) | | 14x+0=16 | | 3c+2=2+3c | | 7/(x+7)^2=23/54 | | 7n-5=11 | | x2−7x−30=0 | | (14x-47)°=(6x+33)° | | r+r+r-r+r=15 | | –c+9c=8c | | 2(2x+6)=x(x+3) | | 16x+0=8 | | 0+15y=10 | | 10x+0=7 | | 15a+2a=6a+9a+20 | | 0+11y=0 | | 15a+2a=6a+9a+2a | | 16x+0=0 | | (-3)(1-x)*(-2)=-(7-x) | | 0-14y=4 | | -8x+6(x-7)=-36 | | (x+20)°+(-160+x)°=180° | | (x+2)(2x-9)=24^2 | | 0-6y=-2 | | 1.5=-4t^2 | | (x-4)²-25=0 | | 0+10y=-7 | | 9x^2+12x+36=46 | | 8x+38=8(5+x)-2 |