If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16Y^2+16+4
We move all terms to the left:
-(-16Y^2+16+4)=0
We get rid of parentheses
16Y^2-16-4=0
We add all the numbers together, and all the variables
16Y^2-20=0
a = 16; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·16·(-20)
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{5}}{2*16}=\frac{0-16\sqrt{5}}{32} =-\frac{16\sqrt{5}}{32} =-\frac{\sqrt{5}}{2} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{5}}{2*16}=\frac{0+16\sqrt{5}}{32} =\frac{16\sqrt{5}}{32} =\frac{\sqrt{5}}{2} $
| -(3+x)=-2+1+4x-5x | | 6(5x+2)=30x-7 | | 8b^2-13b+6=5b^2 | | 144-y=132 | | y(y)-y=132 | | -4(3k+2)=2(8-4K) | | 64=32^x-5 | | -129+s=332 | | (y)(y)-y=132 | | (20)^x=200000 | | 20^x=200000 | | 1=(x-0)/(15-0) | | 1/12x-1/12=1/8x+1/6-1/6 | | 3x+5+4x=13x-17-2x | | 3p-48=-3p+6p | | 2/3x+6/5x=15 | | (5w+7)-(2w=5)=53 | | (5w+7)-(2w=5)=5 | | 4(f-3)+3(f+2)=50 | | 2y+5+2y+5+y^2-62=360 | | 2(x-7)=-2x-14 | | 2y+5+2y+5+y^2-62=180 | | -2(x+5)=2x+10 | | 3=6÷x+3x | | 3=6/x+3x | | Y=2/25x+20 | | 5m=86-11 | | 2h-1/10=6 | | 6(3s+1)=240 | | 4c-5+14c=63 | | Y=-1/100x+92 | | 12.6+4m=9.6+8m12.6+4m=9.6+8m12 |