X=(5x+2)(4x-3)

Simple and best practice solution for X=(5x+2)(4x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X=(5x+2)(4x-3) equation:



X=(5X+2)(4X-3)
We move all terms to the left:
X-((5X+2)(4X-3))=0
We multiply parentheses ..
-((+20X^2-15X+8X-6))+X=0
We calculate terms in parentheses: -((+20X^2-15X+8X-6)), so:
(+20X^2-15X+8X-6)
We get rid of parentheses
20X^2-15X+8X-6
We add all the numbers together, and all the variables
20X^2-7X-6
Back to the equation:
-(20X^2-7X-6)
We add all the numbers together, and all the variables
X-(20X^2-7X-6)=0
We get rid of parentheses
-20X^2+X+7X+6=0
We add all the numbers together, and all the variables
-20X^2+8X+6=0
a = -20; b = 8; c = +6;
Δ = b2-4ac
Δ = 82-4·(-20)·6
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{34}}{2*-20}=\frac{-8-4\sqrt{34}}{-40} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{34}}{2*-20}=\frac{-8+4\sqrt{34}}{-40} $

See similar equations:

| 20=2u+6 | | (13c-8)(5c+11)=0 | | -3s+2=-16 | | 9x+41=-22 | | –6n–2n=16 | | 5(x+4)+7=10x-5(x-4) | | 21=x/8+6 | | -2(-7x+4)-3x=3(x-5)-3 | | 7(-8+y)+5y=16 | | 16t-9t=14 | | 2/7(2+7x)=14 | | 2g–4=4 | | p/4+-9=-10 | | -6-12X=2x+14 | | 1/x=0.018 | | 3•n+8=98 | | 18–2p=2 | | -4x-9=5x-90 | | 2(u+4)=18 | | 8y-3y=45 | | 8k-3k=4k+k | | B=2x+21 | | 8=2/3r+2 | | 3(x+2)+1=3x-5+12 | | 7x4=30- | | 9(2x-3)-4(3x+5)=5(x+4) | | 1+5b+8=8+6b | | R=10x | | X-1/4-5=x-7/3 | | (2+13)x-27=48 | | 4x+2=-5x-61 | | m+9=45 |

Equations solver categories