X=(1p2+12p)-(6p2-22p)

Simple and best practice solution for X=(1p2+12p)-(6p2-22p) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X=(1p2+12p)-(6p2-22p) equation:



X=(1X^2+12X)-(6X^2-22X)
We move all terms to the left:
X-((1X^2+12X)-(6X^2-22X))=0
We calculate terms in parentheses: -((1X^2+12X)-(6X^2-22X)), so:
(1X^2+12X)-(6X^2-22X)
We get rid of parentheses
1X^2-6X^2+12X+22X
We add all the numbers together, and all the variables
-5X^2+34X
Back to the equation:
-(-5X^2+34X)
We get rid of parentheses
5X^2-34X+X=0
We add all the numbers together, and all the variables
5X^2-33X=0
a = 5; b = -33; c = 0;
Δ = b2-4ac
Δ = -332-4·5·0
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1089}=33$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-33)-33}{2*5}=\frac{0}{10} =0 $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-33)+33}{2*5}=\frac{66}{10} =6+3/5 $

See similar equations:

| -2x-3x+50=15 | | 8x+11=25 | | 2y-2+2(3y+3)=-2(y+4) | | 2(x+13)+2(2x)=3x+4+2x+5+5x+1 | | u/11=17/8 | | 3c-2=c+22 | | 20x-10x=20-10 | | 24+0.14x=14+0.18x | | 30x=7 | | 9.28m-4.7m-8.5=63.5 | | 8r+1-7r-9=r+4-2r | | 4j+132=14j+1 | | 12-7n=57 | | 3(x-4)=7x-19 | | 3(2m-6)=1/3(12m+30) | | -5y=-4y+7 | | -33=u/4-5 | | 32=4(d-88) | | 7x-10x+18+x=-5 | | 23x=3(20+x) | | 4=n3+2 | | 7(-8+7v)-3v=128 | | 384=6(8+7n) | | -3=5w+7 | | 1/4(x+8)-2=2x+10 | | 7(y-1)-3=-4(-7y+5)-9y | | 7aa=5 | | -½x+5=25 | | 1,405.234+c=1,932.321 | | 141-y=191 | | 4-8x=-6+7x | | -9=5x+5-3x |

Equations solver categories