If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X=(15-2X)(20-X)
We move all terms to the left:
X-((15-2X)(20-X))=0
We add all the numbers together, and all the variables
X-((-2X+15)(-1X+20))=0
We multiply parentheses ..
-((+2X^2-40X-15X+300))+X=0
We calculate terms in parentheses: -((+2X^2-40X-15X+300)), so:We add all the numbers together, and all the variables
(+2X^2-40X-15X+300)
We get rid of parentheses
2X^2-40X-15X+300
We add all the numbers together, and all the variables
2X^2-55X+300
Back to the equation:
-(2X^2-55X+300)
X-(2X^2-55X+300)=0
We get rid of parentheses
-2X^2+X+55X-300=0
We add all the numbers together, and all the variables
-2X^2+56X-300=0
a = -2; b = 56; c = -300;
Δ = b2-4ac
Δ = 562-4·(-2)·(-300)
Δ = 736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{736}=\sqrt{16*46}=\sqrt{16}*\sqrt{46}=4\sqrt{46}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-4\sqrt{46}}{2*-2}=\frac{-56-4\sqrt{46}}{-4} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+4\sqrt{46}}{2*-2}=\frac{-56+4\sqrt{46}}{-4} $
| 6p+5p=88-20 | | 6.8(2x-9)=21.76 | | 3x+21=5-9 | | H=8a+56 | | b-2/3=4/5 | | 5^9x=17^-x+10 | | 21/2-3/4=x | | t/2+-3=-2 | | 9=3+2f | | 300+60x=480 | | 8x+12X=600 | | 2x+24=-14 | | 3p+-8=-11 | | 2/7+x=3/3 | | 8x+4x=600 | | 56x^2-156.8x+109.0=0 | | 56x^2-156.8x-109=0 | | 1/2m+3/4m=10 | | 9.5x=152 | | r/3-(-4)=5 | | 200(340-x)=140(340+x) | | 14=20-3c | | m^210m+9=0 | | -4=-2z+2 | | 55.75x^2-155.8x+109=0 | | 124+0.29x=240 | | 1.24+0.29x=240 | | 36x^2-72x=0 | | 15=z/3+11 | | 30y-5y-8y=8 | | 3^2x=18 | | 11m+21=109 |