If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2-9X-225=0
We add all the numbers together, and all the variables
X^2-9X-225=0
a = 1; b = -9; c = -225;
Δ = b2-4ac
Δ = -92-4·1·(-225)
Δ = 981
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{981}=\sqrt{9*109}=\sqrt{9}*\sqrt{109}=3\sqrt{109}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-3\sqrt{109}}{2*1}=\frac{9-3\sqrt{109}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+3\sqrt{109}}{2*1}=\frac{9+3\sqrt{109}}{2} $
| 2y/20=9 | | |f-4|=9 | | X3-6x2+2x-12=0 | | 1/5(5x-30)=10 | | 24-5x=8.2 | | -2(u+15)=6 | | 104=3x+2 | | 6x2+12x-15=0 | | y=10^1 | | y=10^-1 | | 6.36-5.3x=0 | | 364=x+12 | | 3p-6=-39 | | 5×+4y=1 | | 10x+50=9x+63 | | y=(2.2)^2 | | y=(2.2)^1 | | y=(2.2)^-1 | | y=(2.2)^-2 | | 10x-40=7x-21 | | 250=3x-5 | | 6(2x+9)=60 | | 9m−4(2m−9)=18 | | 2/3x-15=33 | | 82-x=-24 | | t÷4-3=14 | | z7̅+4=1 | | 21x+6=90.° | | 4m-3=-27 | | 2x+4x+4x=198 | | 12=x3x | | y=10^-2 |