If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+12x-15=0
a = 6; b = 12; c = -15;
Δ = b2-4ac
Δ = 122-4·6·(-15)
Δ = 504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{504}=\sqrt{36*14}=\sqrt{36}*\sqrt{14}=6\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-6\sqrt{14}}{2*6}=\frac{-12-6\sqrt{14}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+6\sqrt{14}}{2*6}=\frac{-12+6\sqrt{14}}{12} $
| y=10^1 | | y=10^-1 | | 6.36-5.3x=0 | | 364=x+12 | | 3p-6=-39 | | 5×+4y=1 | | 10x+50=9x+63 | | y=(2.2)^2 | | y=(2.2)^1 | | y=(2.2)^-1 | | y=(2.2)^-2 | | 10x-40=7x-21 | | 250=3x-5 | | 6(2x+9)=60 | | 9m−4(2m−9)=18 | | 2/3x-15=33 | | 82-x=-24 | | t÷4-3=14 | | z7̅+4=1 | | 21x+6=90.° | | 4m-3=-27 | | 2x+4x+4x=198 | | 12=x3x | | y=10^-2 | | y=(3.5)^2 | | y=(3.5)^1 | | y=(3.5)^-1 | | y=(3.5)^-2 | | 4m+10=42m= | | X(x-17)-18x=(x-3)(x+16=3 | | X(x-17)-18x=(x-3)(x+16=2 | | X(x-17)-18x=(x-3)(x+16=1 |