If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2-20X+45=0
We add all the numbers together, and all the variables
X^2-20X+45=0
a = 1; b = -20; c = +45;
Δ = b2-4ac
Δ = -202-4·1·45
Δ = 220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{220}=\sqrt{4*55}=\sqrt{4}*\sqrt{55}=2\sqrt{55}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{55}}{2*1}=\frac{20-2\sqrt{55}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{55}}{2*1}=\frac{20+2\sqrt{55}}{2} $
| 3/2x+2=1 | | 3/2x=18,000 | | IxI-Ix-2I=2 | | x+1/2x=18,000 | | 3^x^+^6=243 | | |x=4|=|2x-12| | | -27=`21+8y | | -27=`21=8y | | (x+3)+(2x-7)=180 | | 5y-2y=20-5 | | 8=x/4-2 | | 8=x/4+-2 | | 3r-16=18 | | 20x-6=112 | | 20x-6=100 | | 20x-6=106 | | 8x-1=x=1 | | 20x-6=105 | | 5y+1=8 | | (3+x)/5-4=33 | | 7x+4+5x+8=160 | | 5^x+1-5^x-1=11 | | 3y+6=-9-2y | | 3z-7=z+7 | | 3y-9=5+2y | | 10w=100,000w | | x+15=91 | | 8z+1=9z-7 | | 3x+11-5x=17-19x+17x-6 | | 2.3x=42 | | 24x-7-18x+3=20x-5-14x+11 | | (5x+2)/4x=15 |