If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2-12X=265
We move all terms to the left:
X2-12X-(265)=0
We add all the numbers together, and all the variables
X^2-12X-265=0
a = 1; b = -12; c = -265;
Δ = b2-4ac
Δ = -122-4·1·(-265)
Δ = 1204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1204}=\sqrt{4*301}=\sqrt{4}*\sqrt{301}=2\sqrt{301}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{301}}{2*1}=\frac{12-2\sqrt{301}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{301}}{2*1}=\frac{12+2\sqrt{301}}{2} $
| 4(x4(x+3)=3x+17 | | 2x+18+3x+6=24 | | 3x+4+8=3(x+4) | | j/913=-11 | | 10+5x=0+3x | | 14+31h=70 | | 7x-5x-5=0 | | j/913=-1 | | (3+2y)/4=(5y+6)/7 | | (x-1)^2(x+2)^2=2x^2 | | G(x)=3x+1,G(-1)= | | 1/2x2=20 | | L+a=4 | | (x-1)2(x+2)2=2x2 | | x/5-11=13 | | E^(2x+3)=6 | | x/5-22=-20 | | 2/3(x-40)^=24 | | x/4+3=-15 | | x2-29=0 | | 6x-2(-3x-5)=15 | | (y+3)+9(y+2)=y-3 | | Y=7/3x9+1 | | 5x+3=3(x+1)+2x | | 4x-45=5x+5 | | 1/3x+4=5/6x+1 | | F(x)=3x/x-4x | | 1/2x-2.5=1/3x-(1/3*(-5)) | | c=c+5 | | –2b+17=9 | | 4x-5=3x+x-6 | | 15=x/3+3 |