If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2-10X+6=0
We add all the numbers together, and all the variables
X^2-10X+6=0
a = 1; b = -10; c = +6;
Δ = b2-4ac
Δ = -102-4·1·6
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{19}}{2*1}=\frac{10-2\sqrt{19}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{19}}{2*1}=\frac{10+2\sqrt{19}}{2} $
| (y-4)^2=-92 | | 50.1*10^-12x^2-19.3*10^-6x-1=0 | | 4(5x-2)+8=42 | | 16x=4+9x | | 65/(3x+14)=13/2x | | 2x5=15 | | 2x5=153x | | x2+12x=5 | | 6a^2=a+77 | | 0+1=x | | 21/x=9/42 | | 9/5=x/42 | | 3/11=13/x | | 12/x=96/500 | | 3x^2+19x+18=0 | | y2+7=(y-1)2+3y | | y=20,000(1.03^25) | | x/9+8=-2 | | 4^x×4^-1=3.2^x-8 | | y=20,000(1.03(25)) | | 2x-4/x3=2/x-3+3 | | 4^x-1=3.2^x-8 | | 3x^2-19x-18=0 | | 3x^2-19x918=0 | | (x-20x)=4200 | | 20=14-3x | | 50.1x^2-19.4x-1=010^-6 | | 50.1x^2-19.4x-1=0 | | 25=-10+5r | | (28+3(2x-7))=49 | | -12+20x=20x-60 | | 9=-2m-3 |