If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+X=784
We move all terms to the left:
X2+X-(784)=0
We add all the numbers together, and all the variables
X^2+X-784=0
a = 1; b = 1; c = -784;
Δ = b2-4ac
Δ = 12-4·1·(-784)
Δ = 3137
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{3137}}{2*1}=\frac{-1-\sqrt{3137}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{3137}}{2*1}=\frac{-1+\sqrt{3137}}{2} $
| 11(2j-7)=121 | | 3(8f+1)=51 | | 10(h-4)=60 | | 3x+5=9÷x | | 5(4n+3)=15 | | 5x+7+x=6x+6+4x-1 | | 7(2r-5)=21 | | 6(4s-3)=30 | | A=4πr2(42) | | 1/3=k | | 2(3d+1)=8 | | 2(y+9)=22 | | 10-7x=-31 | | 20x^-3=2 | | 5(r+4)=25 | | K(3x-7)=-6x+14 | | 7(e+5)=56 | | -3(2y-7)/2=4y+11 | | 4(k-4)=16 | | -(4-9c)/2=-5c+17 | | 3/4k−6=1 | | 8+3(n-+)=5n-2(n+1) | | z/9-6=1 | | 3x-9=5x-4+21-3x | | -3(w-9)/4=3-2w | | 88+1/7x=9 | | 8(q-4)=2(q+1) | | 24x=8(x6) | | 8w=4720 | | 9x+8=5x+2 | | 8.4^x=(0.5)^-x | | 13+(6m)=67 |