If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+X2=45
We move all terms to the left:
X2+X2-(45)=0
We add all the numbers together, and all the variables
2X^2-45=0
a = 2; b = 0; c = -45;
Δ = b2-4ac
Δ = 02-4·2·(-45)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{10}}{2*2}=\frac{0-6\sqrt{10}}{4} =-\frac{6\sqrt{10}}{4} =-\frac{3\sqrt{10}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{10}}{2*2}=\frac{0+6\sqrt{10}}{4} =\frac{6\sqrt{10}}{4} =\frac{3\sqrt{10}}{2} $
| X+22=x+2 | | x-16=56 | | x-20=56 | | 2x+1=64+X | | F(t)=2.25(t/5)+9 | | x+18=52 | | 4x^2-13x+180=0 | | 5t-9=7t | | 60-(4x+12)=4(x+3)+x | | 5x+3=7x=3 | | 120-y=230 | | 7x+14=4x+32 | | 5x+3+3x+29=180 | | 10x-17=2x+3 | | 0.12x+0.5+x=x/3+1.5 | | -8=-2/3v | | 4^x+^2=12 | | 5(x-1)=2(x+7) | | 5x-4=2x+16 | | 7x+5=3-2x | | x^2=114 | | 3x-15=7x+-6 | | 5x/7-2/3=1/5 | | 2x^2-5x+5=-x^2-6x-5 | | 3x/4+2/3=11/3-7x/4 | | (-x)+43=-12 | | x2−8x+6=0 | | p-20p=6 | | (X*X)+s=31 | | 32*2x=28+8x | | Y*y+5=31 | | 3z/10+6=4 |