If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+90X-1200=0
We add all the numbers together, and all the variables
X^2+90X-1200=0
a = 1; b = 90; c = -1200;
Δ = b2-4ac
Δ = 902-4·1·(-1200)
Δ = 12900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12900}=\sqrt{100*129}=\sqrt{100}*\sqrt{129}=10\sqrt{129}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-10\sqrt{129}}{2*1}=\frac{-90-10\sqrt{129}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+10\sqrt{129}}{2*1}=\frac{-90+10\sqrt{129}}{2} $
| -33=8d-1 | | 3k+11k+7k+-8k+-10k=-9 | | 5s-30=3s | | 5y=7y+22 | | 2(4z+3z-1+z+3)=58 | | -17=w3–15 | | 7y=5y`22 | | 5v+49=12v | | 18v=8v+30 | | 2w-23=w-3 | | 424=c+-381 | | (0.75)(5)-y=8.25 | | 752=8p | | 2(3z-1+4z+3)=130 | | 2t+45=3t+26 | | (0.75)(57)-y=8.25 | | 4=23-9x | | 4x+4+7x+8+8x+3=180 | | 4u+18=5u | | 14u-12=10u | | -9v=108 | | 2(4x-2+3x)=94 | | 4=j+15/8 | | 3v=2v+19 | | f+279=-31 | | .22x=5 | | 7/2v=15 | | -534=-6t | | 18-2x=7x | | y+-716=-75 | | 20=(x)/(500+x)*100 | | 3x+25x-3=7(4x+5) |