If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+8X+14=180
We move all terms to the left:
X2+8X+14-(180)=0
We add all the numbers together, and all the variables
X^2+8X-166=0
a = 1; b = 8; c = -166;
Δ = b2-4ac
Δ = 82-4·1·(-166)
Δ = 728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{728}=\sqrt{4*182}=\sqrt{4}*\sqrt{182}=2\sqrt{182}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{182}}{2*1}=\frac{-8-2\sqrt{182}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{182}}{2*1}=\frac{-8+2\sqrt{182}}{2} $
| 3r=0.6 | | 0.36=9t | | (0.375/0.506)=0.02x/(0.02x+2.25) | | 15=30j | | 0.375/0.506=0.02x/0.02x+2.25 | | 8a4=6 | | 1.4=0.2a | | 7x=-5-9 | | 8x=-1-15 | | 9x=-5-13 | | 7x=5+23 | | 36^2+15^2=(15+x)^2 | | -3/8h=27 | | 11/8=n/50 | | 5/9n=25 | | 3x=-12-9 | | 5x=6+14 | | (4+5i)(12+11i)=0 | | 3I−8xI+8=80 | | k9(k-4)=4•3 | | 2g=8=32 | | 4/7×n=14 | | 6x=6+12 | | 3x=2+19 | | 3x+20+120+x=180 | | 5.6-x=4/4 | | 11n=8n–6 | | 144+16x=180 | | x-5=13.5 | | x-5=3.7 | | 46+3x+13=180 | | x-5=18.5 |