If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+5X-34=0
We add all the numbers together, and all the variables
X^2+5X-34=0
a = 1; b = 5; c = -34;
Δ = b2-4ac
Δ = 52-4·1·(-34)
Δ = 161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{161}}{2*1}=\frac{-5-\sqrt{161}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{161}}{2*1}=\frac{-5+\sqrt{161}}{2} $
| 20(4^x)=30(2^x) | | (x=3)/7=3 | | (x-5)/6=1 | | 2(x+5)=6x=4 | | x/12−9=-10 | | 3x+2=13/3 | | -1/2=x+7 | | X*2+19x+99=0 | | x/5=5=8 | | 2y+3=2.y= | | A=(x(3x-1=2) | | 3x2–5x–1=0 | | 3(3w+4)/2=-2 | | 7a+19=5a | | 21=7x/8-7 | | 10-4x=20-6x | | 3x+-1/3=5 | | 30=30t+4.9t^2 | | 5(a+1)=-15 | | −4.5+q=3.9 | | 5(4y+1)=3(4y-3) | | p/4+7=-1* | | 5x-11=8x+11 | | 6x+10=6x-14 | | (X+20)(x+3)(x+7)=180 | | 16x+6=231 | | 15x+6=232 | | 5x2+10=30 | | .5x2+10=30 | | 5^2x+1+25=125 | | 6x4+9-5=289 | | 26+-2x=4 |