If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+2X-118=0
We add all the numbers together, and all the variables
X^2+2X-118=0
a = 1; b = 2; c = -118;
Δ = b2-4ac
Δ = 22-4·1·(-118)
Δ = 476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{476}=\sqrt{4*119}=\sqrt{4}*\sqrt{119}=2\sqrt{119}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{119}}{2*1}=\frac{-2-2\sqrt{119}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{119}}{2*1}=\frac{-2+2\sqrt{119}}{2} $
| 2((x)+(x+1))=3(x+2)+11 | | .6666(3x+9)=-2(2x+6) | | 4f+15=19 | | m-49=7 | | 7^(5x-8)=49 | | 7^(5x-8)=49. | | 90+x+(90-x)=0 | | 3/4x+5=1/8x-1 | | 4m+4m+8=-24 | | 90+x+(90-x)=180 | | Y-1=0.33333(x-2) | | 5g(8g+6)=40g+6 | | 2x^2-4x-10=20 | | t-3.5=7.5 | | s+1+2s-1=90 | | 7c-7+6c-8=180 | | 2t-7+49=180 | | z+4+101=180 | | z+4=101 | | (x)+(x+1)+(x+2)=2x+13 | | 6s+2+4s-2=180 | | 2,5*(2x+4)-3=5*(4-x)+12 | | 3x-150=51 | | 10/12x-4=2/2x+2 | | 10t+37=17t+55 | | 14+x=55 | | 8t+1+97=180 | | 6-8x=5x-9x-3 | | 3x−(x−4)=4x+4 | | -4x+29-3=2*(x-5) | | 4.4x+8=1.4x+20 | | (2x=9)=33 |