If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+20X+61=0
We add all the numbers together, and all the variables
X^2+20X+61=0
a = 1; b = 20; c = +61;
Δ = b2-4ac
Δ = 202-4·1·61
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{39}}{2*1}=\frac{-20-2\sqrt{39}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{39}}{2*1}=\frac{-20+2\sqrt{39}}{2} $
| 5e+110=180 | | (x/3)-10=20 | | 98-2=5x+3x | | 3+4x-x2=0 | | (x/12)=2 | | 110+35+11c=180 | | 11c=180 | | 6(t-2)-4=2tt= | | 2b=70=180 | | a+70=180 | | 10=2n/5+4 | | (x/6)+10=46 | | 3x-x+6+5x-2=10 | | 5=2n/5+4 | | (x)=(x+2)(x-1)(x-3) | | 10=-2,4n+10 | | 89=10g+9 | | 5=-2,4n+10 | | 5t-18=22 | | 10=2,5n-1,3 | | (2y-7)(1+y)=0 | | 6r-1+6r=96 | | f+14/–6=–6 | | f+14–6=–6 | | 10=3n-7 | | (4x+2)(2x+8)=0 | | 4y/4=36 | | 5=3n-7 | | 5k+8-5=3.5k+2.4k | | 2(5x-8)=2+10 | | 10=-n+3 | | d/–2+20=25 |