X2+(x+1)2=305

Simple and best practice solution for X2+(x+1)2=305 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X2+(x+1)2=305 equation:



X2+(X+1)2=305
We move all terms to the left:
X2+(X+1)2-(305)=0
We add all the numbers together, and all the variables
X^2+(X+1)2-305=0
We multiply parentheses
X^2+2X+2-305=0
We add all the numbers together, and all the variables
X^2+2X-303=0
a = 1; b = 2; c = -303;
Δ = b2-4ac
Δ = 22-4·1·(-303)
Δ = 1216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1216}=\sqrt{64*19}=\sqrt{64}*\sqrt{19}=8\sqrt{19}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-8\sqrt{19}}{2*1}=\frac{-2-8\sqrt{19}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+8\sqrt{19}}{2*1}=\frac{-2+8\sqrt{19}}{2} $

See similar equations:

| 6-7x=-8x+16 | | 180-x=4x+25 | | Y=3x^2+5x=-4 | | 2y+10=y-6 | | (x/4)+28=2x | | 2.1p=63 | | 12x-8=4x+2 | | (5x-6)=(4x+3) | | 2n^2-15+7=0 | | 7x+(5x-6)=0 | | 2x^2-33x-126=0 | | 7x+(5x+6)=0 | | 7x-(5x-+6)=0 | | 7x-(5x-6)=0 | | 7x-(5x+6)=0 | | 100+6x=13x-58 | | 14x-1=1911 | | a+15=2a+3 | | 4k+3=6k-14 | | 4+30x=20x+3 | | 4k(k+3)=0 | | 1/3+x=17 | | 7a=5a+16 | | 6a=88-5a | | (9v+2)/12=0 | | 78=-6(2)+b | | 5a-3.8=-6.4 | | 16x+976=384 | | x/2-1/3=x/3+1/6 | | 6x+9=12x-21 | | n2-n-121=0 | | x*0.65=5000 |

Equations solver categories