X2+(x+1)(x+1)=85

Simple and best practice solution for X2+(x+1)(x+1)=85 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X2+(x+1)(x+1)=85 equation:



X2+(X+1)(X+1)=85
We move all terms to the left:
X2+(X+1)(X+1)-(85)=0
We add all the numbers together, and all the variables
X^2+(X+1)(X+1)-85=0
We multiply parentheses ..
X^2+(+X^2+X+X+1)-85=0
We get rid of parentheses
X^2+X^2+X+X+1-85=0
We add all the numbers together, and all the variables
2X^2+2X-84=0
a = 2; b = 2; c = -84;
Δ = b2-4ac
Δ = 22-4·2·(-84)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{676}=26$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-26}{2*2}=\frac{-28}{4} =-7 $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+26}{2*2}=\frac{24}{4} =6 $

See similar equations:

| 0=8.9t-4.9t^2 | | d^2-16d=-31 | | x=3x+5/2+2 | | 5(x+6)+8-2x=x+2(x-11) | | d*^2-16d=-31 | | Q=920-5p | | 5x-3+6=131 | | 4+4v–8v=–16 | | 10=2(2+q)+12 | | Q=920-p | | 3=8+v/5 | | 9-(2x+1)=729 | | -9/10p-3=3/5 | | –7(p+3)–2p=–84 | | 3x2−27x=−5x−7 | | 4x+1-3x=2 | | x-3=(3x-13) | | 2x=6,000+1.23x | | F(-4)=4x^2-5x+6 | | v/5-15=28 | | -12+8d-19d=20-7d= | | 3x^2+23x-8.7=0 | | 3/24=33/a | | -5(6-7x)-(1-x)=4(x-5) | | x=3=2x-7 | | 3x-10=-45 | | 3w=-5.5 | | -4-4(3+2n)=12(n+7) | | 498+x-398=1808 | | 14+4c=34 | | -2(7)=z | | 1*1/4=d/80 |

Equations solver categories