X+30+x+2/5x+3/5x=180

Simple and best practice solution for X+30+x+2/5x+3/5x=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X+30+x+2/5x+3/5x=180 equation:



X+30+X+2/5X+3/5X=180
We move all terms to the left:
X+30+X+2/5X+3/5X-(180)=0
Domain of the equation: 5X!=0
X!=0/5
X!=0
X∈R
We add all the numbers together, and all the variables
2X+2/5X+3/5X-150=0
We multiply all the terms by the denominator
2X*5X-150*5X+2+3=0
We add all the numbers together, and all the variables
2X*5X-150*5X+5=0
Wy multiply elements
10X^2-750X+5=0
a = 10; b = -750; c = +5;
Δ = b2-4ac
Δ = -7502-4·10·5
Δ = 562300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{562300}=\sqrt{100*5623}=\sqrt{100}*\sqrt{5623}=10\sqrt{5623}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-750)-10\sqrt{5623}}{2*10}=\frac{750-10\sqrt{5623}}{20} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-750)+10\sqrt{5623}}{2*10}=\frac{750+10\sqrt{5623}}{20} $

See similar equations:

| 0.3(x+5)=5(0.1÷0.11x) | | 5(2n+4)=7(7n+8)+8 | | 5r-11r=36 | | 53=3(3z+3)+3z | | (-3y)-8=25 | | x^-5x-2=0 | | 0=5x^2-60x+126 | | 0.29x-0.25=0.43x÷0.03 | | 0.2(x+3)-0.5(x+3)=0.3x-0.9 | | -8y+8=37y-y | | 1=0.3x-0.9-29 | | -6(5x-2)+9=-30x+21 | | 1/3x+4/9x=1 | | 64-a^=0 | | (x-6)^3/4)=8 | | t+879=115 | | -3.8x=55.86 | | 3x+4+12+2x+18=89 | | 3x÷5+1÷6=x÷2-1÷3 | | -10+n=-4 | | 4x+12+2x+10=58 | | 3(a+12)=3a+ | | 3×4^x/3=192 | | 4y+2(y-4)=8y-4(y-10 | | 20–10d+5=-17–7d | | 7+22=x | | 2/5+r=3/5 | | 30=7x-30 | | 9.1w=9.88+11w | | 2/3x-4/5=3/15 | | 198=-4x+2(-6x+3 | | -8m+14+9m=-3 |

Equations solver categories