If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(X/3)=972
We move all terms to the left:
X(X/3)-(972)=0
We add all the numbers together, and all the variables
X(+X/3)-972=0
We multiply parentheses
X^2-972=0
a = 1; b = 0; c = -972;
Δ = b2-4ac
Δ = 02-4·1·(-972)
Δ = 3888
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3888}=\sqrt{1296*3}=\sqrt{1296}*\sqrt{3}=36\sqrt{3}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{3}}{2*1}=\frac{0-36\sqrt{3}}{2} =-\frac{36\sqrt{3}}{2} =-18\sqrt{3} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{3}}{2*1}=\frac{0+36\sqrt{3}}{2} =\frac{36\sqrt{3}}{2} =18\sqrt{3} $
| 3s=507 | | 16x-13=9x+13 | | -8-3k=-2k | | x³-9x²+15x+25=0 | | 8s-(5s-6)=1/2(20+6s) | | 7p=931 | | 8s-(5s-6)=1/2(20+6s | | 3x2+22x=−35 | | 24g=384 | | 9x+451+5x+223=180 | | 10x-13=3x+22=180 | | 2j−7=3 | | 9x+451=5x+223 | | 8s=400 | | -2.4+s=-1.6 | | -8-77p=-113 | | 0.008*x=1 | | 3x-5+6=x-9-2x | | -5=-5a+25 | | ×+2+3x=90 | | x^2+10x-21=6x+11 | | 31/2a-51/4a+3/4a=1 | | 11x-18=42 | | 21/4d=-14/5 | | 3(4x-5)=3(2x-1)+12 | | p+5=90 | | y+–20y+17y+–16=–4 | | (x+7)x2=81 | | -126=2(1+8r) | | 0.02x+3(0.04x+3)=0.6 | | Y+8(2x-6)+4x=180 | | 14x+6=25x+3 |