If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(X+8)=42
We move all terms to the left:
X(X+8)-(42)=0
We multiply parentheses
X^2+8X-42=0
a = 1; b = 8; c = -42;
Δ = b2-4ac
Δ = 82-4·1·(-42)
Δ = 232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{232}=\sqrt{4*58}=\sqrt{4}*\sqrt{58}=2\sqrt{58}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{58}}{2*1}=\frac{-8-2\sqrt{58}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{58}}{2*1}=\frac{-8+2\sqrt{58}}{2} $
| 2c-56=2c-79 | | X(x+8=42 | | -12x-4=13x+8 | | 2x+13=9x–50 | | 4x-5x=×-20 | | y+99=10y | | 5u+25=0 | | 2x+19=(x+12)-12 | | 180x=2(30/3)+17-5•11+2/1 | | (2n-1)(2n-1)=0 | | (2n-1)^2=0 | | 121=-5+6(-4v+5 | | 15x-9=3x+39 | | 30(25+x=99 | | 150(100.x)=210 | | 10(25.x)=72 | | 10(25x)=72 | | 13x+24=18x−16 | | x+6=15x-1 | | -8+2x=12+13x | | 6x-45=10 | | 1/3(2x+3}=3 | | x+4/11=2/3 | | N*(n-7)=30 | | 3x-4/9+x=3x+4/3+2 | | 12584/25168g=0 | | 10(x+3)-(-9-4)=x- | | 5/3x+1=4 | | 100=y−34 | | f(3)=8f(1)=2 | | 4-2x+6x=20 | | L=2w+2 |